fix and optimize crypto.asm

also a bit more standardization
This commit is contained in:
Kevin Cathcart
2018-06-23 11:52:38 -04:00
parent 080ed59541
commit bc2d9d95a5
2 changed files with 201 additions and 174 deletions

View File

@@ -2,7 +2,7 @@
; $7F5100 - $7F51FF - Block Cypher Buffer
!v = "$7F5100"
!n = "$04"
!MXResult = "$06"
!MXResult = "$08" ; an alternate name for the lower 32 bits of dpScratch
!dpScratch = "$08"
!keyBase = "$7F50D0"
@@ -12,168 +12,237 @@
!sum = "$7F50E8"
!p = "$7F50EC"
!rounds = "$05"
!rounds = "$06"
!e = "$7F50F0"
!upperScratch = "$7F50F2"
CryptoDelta:
dl #$9e3779b9
dd #$9e3779b9
macro LSR32(value,k)
LDX.w <k>
?loop:
LDA <value>+2
LSR : STA <value>+2 ; do top part
PHP ; push carry
LDA <value>
LSR ; do bottom part
PLP ; pull carry
BCC ?nc
ORA #$80 ; pull in carry
?nc:
STA <value>
DEX
CPX.w #$0000 : BNE ?loop
; For use in an unrolled loop
macro LSR32Single(value)
CLC;
LDA.b <value>+2 : ROR : STA.b <value>+2 ; do top part
LDA.b <value> : ROR : STA.b <value> ; do bottom part
; ROR handles the carry from the upper byte for us
endmacro
macro ASL32(value,k)
LDX.w <k>
?loop:
LDA <value>
LSR : STA <value> ; do bottom part
PHP ; push carry
LDA <value>+2
LSR
PLP ; pull carry
ADC.w #$0000
STA <value>+2 ; do top part
DEX
CPX.w #$0000 : BNE ?loop
macro ASL32Single(value)
CLC
LDA.b <value> : ROL : STA.b <value> ; do bottom part
LDA.b <value>+2 : ROL : STA.b <value>+2 ; do top part
; ROL handles the carry from the lower byte for us
endmacro
;macro LSR32(value,k)
; LDX.b <k>
; ?loop:
; %LSR32Single(<value>,<k>)
; DEX : CPX.b #$00 : BNE ?loop
;endmacro
;macro ASL32(value,k)
; LDX.b <k>
; ?loop:
; %LSR32Single(<value>,<k>)
; DEX : CPX.b #$00 : BNE ?loop
;endmacro
CryptoMX:
PHX
LDA !z : STA !dpScratch
LDA !z+2 : STA !dpScratch+2
%LSR32(!dpScratch,#$05)
LDA !y : STA !dpScratch+4
LDA !y+2 : STA !dpScratch+6
%ASL32(!dpScratch+4,#$02)
LDA !dpScratch : EOR !dpScratch+4 : STA !upperScratch
LDA !dpScratch+2 : EOR !dpScratch+6 : STA !upperScratch+2
; upperScratch = (z>>5 ^ y <<2)
LDA.w !z : STA.b !dpScratch
LDA.w !z+2 : STA.b !dpScratch+2
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
;%LSR32(!dpScratch,#$05)
LDA.w !y : STA.b !dpScratch+4
LDA.w !y+2 : STA.b !dpScratch+6
%ASL32Single(!dpScratch+4)
%ASL32Single(!dpScratch+4)
;%ASL32(!dpScratch+4,#$02)
LDA.b !dpScratch : EOR.b !dpScratch+4 : STA.w !upperScratch
LDA.b !dpScratch+2 : EOR.b !dpScratch+6 : STA.w !upperScratch+2
;================================
LDA !z : STA !dpScratch
LDA !z+2 : STA !dpScratch+2
%ASL32(!dpScratch,#$04)
LDA !y : STA !dpScratch+4
LDA !y+2 : STA !dpScratch+6
%LSR32(!dpScratch,#$03)
LDA !dpScratch : EOR !dpScratch+4 : STA !upperScratch+4
LDA !dpScratch+2 : EOR !dpScratch+6 : STA !upperScratch+6
; upperscratch2 = (y>>3^z<<4)
LDA.w !z : STA.b !dpScratch
LDA.w !z+2 : STA.b !dpScratch+2
%ASL32Single(!dpScratch)
%ASL32Single(!dpScratch)
%ASL32Single(!dpScratch)
%ASL32Single(!dpScratch)
;%ASL32(!dpScratch,#$04)
LDA.w !y : STA.b !dpScratch+4
LDA.w !y+2 : STA.b !dpScratch+6
%LSR32Single(!dpScratch+4)
%LSR32Single(!dpScratch+4)
%LSR32Single(!dpScratch+4)
;%LSR32(!dpScratch+4,#$03)
LDA.b !dpScratch : EOR.b !dpScratch+4 : STA.w !upperScratch+4
LDA.b !dpScratch+2 : EOR.b !dpScratch+6 : STA.w !upperScratch+6
;================================
LDA !upperScratch : !ADD !upperScratch+4 : STA !upperScratch
LDA !upperScratch+2 : ADC !upperScratch+6 : STA !upperScratch+2
; upperscratch = upperscratch + upperscratch2 ( == (z>>5^y<<2) + (y>>3^z<<4) )
LDA.w !upperScratch : !ADD.w !upperScratch+4 : STA.w !upperScratch
LDA.w !upperScratch+2 : ADC.w !upperScratch+6 : STA.w !upperScratch+2
;================================
LDA !sum : EOR !y : STA !dpScratch
LDA !sum+2 : EOR !y+2 : STA !dpScratch+2
; dpscratch = sum^y
LDA.w !sum : EOR.w !y : STA.b !dpScratch
LDA.w !sum+2 : EOR.w !y+2 : STA.b !dpScratch+2
;================================
LDA !p : AND.w #$0003 : EOR !e : ASL #2 : TAX ; put (p&3)^e into X
LDA !keyBase, X : EOR !z : STA !upperScratch+4
LDA !keyBase+2, X : EOR !z+2 : STA !upperScratch+6
; dpscratch2 = (k[p&3^e]^z)
LDA.w !p : AND.w #$0003 : EOR.w !e : ASL #2 : TAX ; put (p&3)^e into X
LDA.w !keyBase, X : EOR.w !z : STA.b !dpScratch+4
LDA.w !keyBase+2, X : EOR.w !z+2 : STA.b !dpScratch+6
;================================
LDA !upperScratch : EOR !upperScratch+4 : STA !MXResult
LDA !upperScratch+2 : EOR !upperScratch+6 : STA !MXResult+2
; upperscratch2 = dpscratch + dpscratch2 (== (sum^y) + (k[p&3^e]^z))
LDA.b !dpScratch : !ADD.b !dpScratch+4 : STA.w !upperScratch+4
LDA.b !dpScratch+2 : ADC.b !dpScratch+6 : STA.w !upperScratch+6
;================================
; MXResult = uppserscratch ^ upperscratch2
LDA.w !upperScratch : EOR.w !upperScratch+4 : STA.b !MXResult
LDA.w !upperScratch+2 : EOR.w !upperScratch+6 : STA.b !MXResult+2
PLX
RTS
!DIVIDEND_LOW = $4204
!DIVIDEND_HIGH = $4205
!DIVISOR = $4206
!QUOTIENT_LOW = $4214
!QUOTIENT_HIGH = $4215
;!DIVIDEND_LOW = $4204
;!DIVIDEND_HIGH = $4205
;!DIVISOR = $4206
;!QUOTIENT_LOW = $4214
;!QUOTIENT_HIGH = $4215
XXTEA_Decode:
PHP
SEP #$20 ; set 8-bit accumulator
PHP : PHB
SEP #$30 ; set 8-bit accumulator and index
LDA.b #$7F : PHA : PLB
STZ.b !n+1 ; set upper byte of n to be zero, so it can safely be accessed in 16-bit mode
; search for lookup table index to avoid division and multiplication
LDX.b #0
-
LDA.l .n_lookup, X
CMP.b !n : !BLT +
INX
BRA -
+
; rounds = 6 + 52/n;
LDA.b #52 : STA !DIVIDEND_LOW ; decimal 52
STZ !DIVIDEND_HIGH
LDA !n : STA !DIVISOR
; NOP #8 ; do something useful here?
LDA.b #$06
NOP #6
!ADD !QUOTIENT_LOW
STA !rounds
; sum = rounds*DELTA;
LDA CryptoDelta : STA !dpScratch
LDA CryptoDelta+1 : STA !dpScratch+1
LDA CryptoDelta+2 : STA !dpScratch+2
LDA CryptoDelta+3 : STA !dpScratch+3
JSR .multiply
LDA !dpScratch
STA !sum
; y = v[0];
LDA.l .round_counts, X : STA.b !rounds : STZ.b !rounds+1
REP #$20 ; set 16-bit accumulator
LDA !v : STA !y
LDA !v+2 : STA !y+2
; sum = rounds*DELTA;
TXA : ASL #2 : TAX
LDA.l .initial_sums, X : STA.w !sum
LDA.l .initial_sums+2, X : STA.w !sum+2
; y = v[0];
LDA.w !v : STA.w !y
LDA.w !v+2 : STA.w !y+2
---
LDA !sum : LSR #2 : AND #$03 : STA !e ; e = (sum >> 2) & 3;
LDA !n : !SUB #$01 : STA !p ; for (p=n-1; p>0; p--) {
--
LDA.w !sum : LSR #2 : AND.w #$0003 : STA.w !e ; e = (sum >> 2) & 3;
LDA.b !n : DEC : STA.w !p
-- BEQ + ; for (p=n-1; p>0; p--) {
; z = v[p-1];
DEC : ASL #2 : TAX
LDA !v, X : STA !z
LDA !v+2, X : STA !z+2
ASL #2 : TAX
LDA.w !v-4, X : STA.w !z
LDA.w !v-4+2, X : STA.w !z+2
; y = v[p] -= MX;
JSR CryptoMX
LDA !p : ASL #2 : TAX
LDA !v, X : !SUB !MXResult : STA !v, X : STA !y
LDA !v+2, X : SBC !MXResult+2 : STA !v+2, X : STA !y+2
LDA !p : DEC : STA !p : BNE -- ; }
LDA.w !p : ASL #2 : TAX
LDA.w !v, X : !SUB.b !MXResult : STA.w !v, X : STA.w !y
LDA.w !v+2, X : SBC.b !MXResult+2 : STA.w !v+2, X : STA.w !y+2
LDA.w !p : DEC : STA.w !p : BRA -- ; }
+
; z = v[n-1];
LDA !n : DEC : ASL #2 : TAX
LDA !v, X : STA !z
LDA !v+2, X : STA !z+2
LDA.b !n : DEC : ASL #2 : TAX
LDA.w !v, X : STA.w !z
LDA.w !v+2, X : STA.w !z+2
; y = v[0] -= MX;
JSR CryptoMX
LDA !v : !SUB !MXResult : STA !v : STA !y
LDA !v+2 : SBC !MXResult+2 : STA !v+2 : STA !y+2
LDA.w !v : !SUB.b !MXResult : STA.w !v : STA.w !y
LDA.w !v+2 : SBC.b !MXResult+2 : STA.w !v+2 : STA.w !y+2
; sum -= DELTA;
LDA !sum : !SUB CryptoDelta : STA !sum
LDA !sum+2 : !SUB CryptoDelta+2 : STA !sum+2
LDA !rounds : BEQ + : BRL --- : + ; } while (--rounds);
PLP
LDA.w !sum : !SUB.l CryptoDelta : STA.w !sum
LDA.w !sum+2 : SBC.l CryptoDelta+2 : STA.w !sum+2
DEC !rounds : BEQ + : BRL --- : + ; } while (--rounds);
PLB : PLP
RTL
; Note: uncomment any values from these tables that correspond to values of n actually in use
; (unused values are commented out to improve performance/ avoid wasting space)
.n_lookup
;db 52 ; n > 52
;db 26 ; n is 27 to 52
;db 17 ; n is 18 to 26
;db 13 ; n is 14 to 17
;db 10 ; n is 11 to 13
;db 8 ; n is 9 to 10
;db 7 ; n is 8
;db 6 ; n is 7
;db 5 ; n is 6
;db 4 ; n is 5
;db 3 ; n is 4
;db 2 ; n is 3
db 1 ; n is 2
.round_counts
;db 6 ; n > 52
;db 7 ; n is 27 to 52
;db 8 ; n is 18 to 26
;db 9 ; n is 14 to 17
;db 10 ; n is 11 to 13
;db 11 ; n is 9 to 10
;db 12 ; n is 8
;db 13 ; n is 7
;db 14 ; n is 6
;db 16 ; n is 5
;db 19 ; n is 4
;db 23 ; n is 3
db 32 ; n is 2
.initial_sums
;dd 6*$9e3779b9 ; n > 52
;dd 7*$9e3779b9 ; n is 27 to 52
;dd 8*$9e3779b9 ; n is 18 to 26
;dd 9*$9e3779b9 ; n is 14 to 17
;dd 10*$9e3779b9 ; n is 11 to 13
;dd 11*$9e3779b9 ; n is 9 to 10
;dd 12*$9e3779b9 ; n is 8
;dd 13*$9e3779b9 ; n is 7
;dd 14*$9e3779b9 ; n is 6
;dd 16*$9e3779b9 ; n is 5
;dd 19*$9e3779b9 ; n is 4
;dd 23*$9e3779b9 ; n is 3
dd 32*$9e3779b9 ; n is 2
;void btea(uint32_t *v, int n, uint32_t const key[4]) {
; uint32_t y, z, sum;
; unsigned p, rounds, e;
@@ -195,47 +264,6 @@ RTL
; } while (--rounds);
; }
.multiply
LDA #$00
STA !upperScratch+4 ;Clear upper half of
STA !upperScratch+5 ;!upperScratchuct
STA !upperScratch+6
STA !upperScratch+7
LDX #$20 ;Set binary count to 32
.shift_r
LSR !dpScratch+3 ;Shift multiplyer right
ROR !dpScratch+2
ROR !dpScratch+1
ROR !dpScratch
BCC .rotate_r ;Go rotate right if c = 0
LDA !upperScratch+4 ;Get upper half of !upperScratchuct
!ADD !rounds ; and add multiplicand to it
STA !upperScratch+4
LDA !upperScratch+5
ADC.w #$00
STA !upperScratch+5
LDA !upperScratch+6
ADC.w #$00
STA !upperScratch+6
LDA !upperScratch+7
ADC.w #$00
.rotate_r
ROR a ;Rotate partial !upperScratchuct
STA !upperScratch+7 ; right
ROR !upperScratch+6
ROR !upperScratch+5
ROR !upperScratch+4
ROR !upperScratch+3
ROR !upperScratch+2
ROR !upperScratch+1
ROR !upperScratch
DEX ;Decrement bit count and
BNE .shift_r ; loop until 32 bits are done
;LDA MULXP1 ;Add dps and put sum in MULXP2
;!ADD MULXP2
;STA MULXP2
RTS
;BTEA will encode or decode n words as a single block where n > 1
;
;v is the n word data vector
@@ -245,7 +273,6 @@ RTS
;assumes 32 bit 'long' and same endian coding and decoding
;#include <stdint.h>
;#define DELTA 0x9e3779b9
;#define MX (((z>>5^y<<2) + (y>>3^z<<4)) ^ ((sum^y) + (key[(p&3)^e] ^ z)))
;#define MX ((((z>>5)^(y<<2)) + ((y>>3)^(z<<4))) ^ ((sum^y) + (key[(p&3)^e] ^ z)))
;
;void btea(uint32_t *v, int n, uint32_t const key[4]) {
@@ -259,7 +286,7 @@ RTS
; sum += DELTA;
; e = (sum >> 2) & 3;
; for (p=0; p<n-1; p++) {
; y = v[p+1];
; y = v[p+1];
; z = v[p] += MX;
; }
; y = v[0];
@@ -281,4 +308,4 @@ RTS
; sum -= DELTA;
; } while (--rounds);
; }
;}
;}