fix and optimize crypto.asm

also a bit more standardization
This commit is contained in:
Kevin Cathcart
2018-06-23 11:52:38 -04:00
parent 080ed59541
commit bc2d9d95a5
2 changed files with 201 additions and 174 deletions

View File

@@ -2,7 +2,7 @@
; $7F5100 - $7F51FF - Block Cypher Buffer ; $7F5100 - $7F51FF - Block Cypher Buffer
!v = "$7F5100" !v = "$7F5100"
!n = "$04" !n = "$04"
!MXResult = "$06" !MXResult = "$08" ; an alternate name for the lower 32 bits of dpScratch
!dpScratch = "$08" !dpScratch = "$08"
!keyBase = "$7F50D0" !keyBase = "$7F50D0"
@@ -12,168 +12,237 @@
!sum = "$7F50E8" !sum = "$7F50E8"
!p = "$7F50EC" !p = "$7F50EC"
!rounds = "$05" !rounds = "$06"
!e = "$7F50F0" !e = "$7F50F0"
!upperScratch = "$7F50F2" !upperScratch = "$7F50F2"
CryptoDelta: CryptoDelta:
dl #$9e3779b9 dd #$9e3779b9
macro LSR32(value,k) ; For use in an unrolled loop
LDX.w <k> macro LSR32Single(value)
CLC;
?loop: LDA.b <value>+2 : ROR : STA.b <value>+2 ; do top part
LDA <value>+2 LDA.b <value> : ROR : STA.b <value> ; do bottom part
LSR : STA <value>+2 ; do top part ; ROR handles the carry from the upper byte for us
PHP ; push carry
LDA <value>
LSR ; do bottom part
PLP ; pull carry
BCC ?nc
ORA #$80 ; pull in carry
?nc:
STA <value>
DEX
CPX.w #$0000 : BNE ?loop
endmacro endmacro
macro ASL32(value,k) macro ASL32Single(value)
LDX.w <k> CLC
LDA.b <value> : ROL : STA.b <value> ; do bottom part
?loop: LDA.b <value>+2 : ROL : STA.b <value>+2 ; do top part
LDA <value> ; ROL handles the carry from the lower byte for us
LSR : STA <value> ; do bottom part
PHP ; push carry
LDA <value>+2
LSR
PLP ; pull carry
ADC.w #$0000
STA <value>+2 ; do top part
DEX
CPX.w #$0000 : BNE ?loop
endmacro endmacro
;macro LSR32(value,k)
; LDX.b <k>
; ?loop:
; %LSR32Single(<value>,<k>)
; DEX : CPX.b #$00 : BNE ?loop
;endmacro
;macro ASL32(value,k)
; LDX.b <k>
; ?loop:
; %LSR32Single(<value>,<k>)
; DEX : CPX.b #$00 : BNE ?loop
;endmacro
CryptoMX: CryptoMX:
PHX PHX
LDA !z : STA !dpScratch
LDA !z+2 : STA !dpScratch+2
%LSR32(!dpScratch,#$05)
LDA !y : STA !dpScratch+4 ; upperScratch = (z>>5 ^ y <<2)
LDA !y+2 : STA !dpScratch+6 LDA.w !z : STA.b !dpScratch
%ASL32(!dpScratch+4,#$02) LDA.w !z+2 : STA.b !dpScratch+2
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
%LSR32Single(!dpScratch)
;%LSR32(!dpScratch,#$05)
LDA !dpScratch : EOR !dpScratch+4 : STA !upperScratch LDA.w !y : STA.b !dpScratch+4
LDA !dpScratch+2 : EOR !dpScratch+6 : STA !upperScratch+2 LDA.w !y+2 : STA.b !dpScratch+6
%ASL32Single(!dpScratch+4)
%ASL32Single(!dpScratch+4)
;%ASL32(!dpScratch+4,#$02)
LDA.b !dpScratch : EOR.b !dpScratch+4 : STA.w !upperScratch
LDA.b !dpScratch+2 : EOR.b !dpScratch+6 : STA.w !upperScratch+2
;================================ ;================================
; upperscratch2 = (y>>3^z<<4)
LDA !z : STA !dpScratch LDA.w !z : STA.b !dpScratch
LDA !z+2 : STA !dpScratch+2 LDA.w !z+2 : STA.b !dpScratch+2
%ASL32(!dpScratch,#$04) %ASL32Single(!dpScratch)
%ASL32Single(!dpScratch)
%ASL32Single(!dpScratch)
%ASL32Single(!dpScratch)
;%ASL32(!dpScratch,#$04)
LDA !y : STA !dpScratch+4 LDA.w !y : STA.b !dpScratch+4
LDA !y+2 : STA !dpScratch+6 LDA.w !y+2 : STA.b !dpScratch+6
%LSR32(!dpScratch,#$03) %LSR32Single(!dpScratch+4)
%LSR32Single(!dpScratch+4)
%LSR32Single(!dpScratch+4)
;%LSR32(!dpScratch+4,#$03)
LDA !dpScratch : EOR !dpScratch+4 : STA !upperScratch+4 LDA.b !dpScratch : EOR.b !dpScratch+4 : STA.w !upperScratch+4
LDA !dpScratch+2 : EOR !dpScratch+6 : STA !upperScratch+6 LDA.b !dpScratch+2 : EOR.b !dpScratch+6 : STA.w !upperScratch+6
;================================ ;================================
; upperscratch = upperscratch + upperscratch2 ( == (z>>5^y<<2) + (y>>3^z<<4) )
LDA !upperScratch : !ADD !upperScratch+4 : STA !upperScratch LDA.w !upperScratch : !ADD.w !upperScratch+4 : STA.w !upperScratch
LDA !upperScratch+2 : ADC !upperScratch+6 : STA !upperScratch+2 LDA.w !upperScratch+2 : ADC.w !upperScratch+6 : STA.w !upperScratch+2
;================================ ;================================
; dpscratch = sum^y
LDA !sum : EOR !y : STA !dpScratch LDA.w !sum : EOR.w !y : STA.b !dpScratch
LDA !sum+2 : EOR !y+2 : STA !dpScratch+2 LDA.w !sum+2 : EOR.w !y+2 : STA.b !dpScratch+2
;================================ ;================================
; dpscratch2 = (k[p&3^e]^z)
LDA !p : AND.w #$0003 : EOR !e : ASL #2 : TAX ; put (p&3)^e into X LDA.w !p : AND.w #$0003 : EOR.w !e : ASL #2 : TAX ; put (p&3)^e into X
LDA !keyBase, X : EOR !z : STA !upperScratch+4 LDA.w !keyBase, X : EOR.w !z : STA.b !dpScratch+4
LDA !keyBase+2, X : EOR !z+2 : STA !upperScratch+6 LDA.w !keyBase+2, X : EOR.w !z+2 : STA.b !dpScratch+6
;================================ ;================================
; upperscratch2 = dpscratch + dpscratch2 (== (sum^y) + (k[p&3^e]^z))
LDA.b !dpScratch : !ADD.b !dpScratch+4 : STA.w !upperScratch+4
LDA.b !dpScratch+2 : ADC.b !dpScratch+6 : STA.w !upperScratch+6
LDA !upperScratch : EOR !upperScratch+4 : STA !MXResult ;================================
LDA !upperScratch+2 : EOR !upperScratch+6 : STA !MXResult+2 ; MXResult = uppserscratch ^ upperscratch2
LDA.w !upperScratch : EOR.w !upperScratch+4 : STA.b !MXResult
LDA.w !upperScratch+2 : EOR.w !upperScratch+6 : STA.b !MXResult+2
PLX PLX
RTS RTS
!DIVIDEND_LOW = $4204 ;!DIVIDEND_LOW = $4204
!DIVIDEND_HIGH = $4205 ;!DIVIDEND_HIGH = $4205
!DIVISOR = $4206 ;!DIVISOR = $4206
!QUOTIENT_LOW = $4214 ;!QUOTIENT_LOW = $4214
!QUOTIENT_HIGH = $4215 ;!QUOTIENT_HIGH = $4215
XXTEA_Decode: XXTEA_Decode:
PHP PHP : PHB
SEP #$20 ; set 8-bit accumulator SEP #$30 ; set 8-bit accumulator and index
LDA.b #$7F : PHA : PLB
STZ.b !n+1 ; set upper byte of n to be zero, so it can safely be accessed in 16-bit mode
; search for lookup table index to avoid division and multiplication
LDX.b #0
-
LDA.l .n_lookup, X
CMP.b !n : !BLT +
INX
BRA -
+
; rounds = 6 + 52/n; ; rounds = 6 + 52/n;
LDA.b #52 : STA !DIVIDEND_LOW ; decimal 52 LDA.l .round_counts, X : STA.b !rounds : STZ.b !rounds+1
STZ !DIVIDEND_HIGH
LDA !n : STA !DIVISOR REP #$20 ; set 16-bit accumulator
; NOP #8 ; do something useful here?
LDA.b #$06
NOP #6
!ADD !QUOTIENT_LOW
STA !rounds
; sum = rounds*DELTA; ; sum = rounds*DELTA;
LDA CryptoDelta : STA !dpScratch TXA : ASL #2 : TAX
LDA CryptoDelta+1 : STA !dpScratch+1 LDA.l .initial_sums, X : STA.w !sum
LDA CryptoDelta+2 : STA !dpScratch+2 LDA.l .initial_sums+2, X : STA.w !sum+2
LDA CryptoDelta+3 : STA !dpScratch+3
JSR .multiply
LDA !dpScratch
STA !sum
; y = v[0]; ; y = v[0];
REP #$20 ; set 16-bit accumulator LDA.w !v : STA.w !y
LDA !v : STA !y LDA.w !v+2 : STA.w !y+2
LDA !v+2 : STA !y+2
--- ---
LDA !sum : LSR #2 : AND #$03 : STA !e ; e = (sum >> 2) & 3; LDA.w !sum : LSR #2 : AND.w #$0003 : STA.w !e ; e = (sum >> 2) & 3;
LDA !n : !SUB #$01 : STA !p ; for (p=n-1; p>0; p--) { LDA.b !n : DEC : STA.w !p
-- -- BEQ + ; for (p=n-1; p>0; p--) {
; z = v[p-1]; ; z = v[p-1];
DEC : ASL #2 : TAX ASL #2 : TAX
LDA !v, X : STA !z LDA.w !v-4, X : STA.w !z
LDA !v+2, X : STA !z+2 LDA.w !v-4+2, X : STA.w !z+2
; y = v[p] -= MX; ; y = v[p] -= MX;
JSR CryptoMX JSR CryptoMX
LDA !p : ASL #2 : TAX LDA.w !p : ASL #2 : TAX
LDA !v, X : !SUB !MXResult : STA !v, X : STA !y LDA.w !v, X : !SUB.b !MXResult : STA.w !v, X : STA.w !y
LDA !v+2, X : SBC !MXResult+2 : STA !v+2, X : STA !y+2 LDA.w !v+2, X : SBC.b !MXResult+2 : STA.w !v+2, X : STA.w !y+2
LDA !p : DEC : STA !p : BNE -- ; } LDA.w !p : DEC : STA.w !p : BRA -- ; }
+
; z = v[n-1]; ; z = v[n-1];
LDA !n : DEC : ASL #2 : TAX LDA.b !n : DEC : ASL #2 : TAX
LDA !v, X : STA !z LDA.w !v, X : STA.w !z
LDA !v+2, X : STA !z+2 LDA.w !v+2, X : STA.w !z+2
; y = v[0] -= MX; ; y = v[0] -= MX;
JSR CryptoMX JSR CryptoMX
LDA !v : !SUB !MXResult : STA !v : STA !y LDA.w !v : !SUB.b !MXResult : STA.w !v : STA.w !y
LDA !v+2 : SBC !MXResult+2 : STA !v+2 : STA !y+2 LDA.w !v+2 : SBC.b !MXResult+2 : STA.w !v+2 : STA.w !y+2
; sum -= DELTA; ; sum -= DELTA;
LDA !sum : !SUB CryptoDelta : STA !sum LDA.w !sum : !SUB.l CryptoDelta : STA.w !sum
LDA !sum+2 : !SUB CryptoDelta+2 : STA !sum+2 LDA.w !sum+2 : SBC.l CryptoDelta+2 : STA.w !sum+2
LDA !rounds : BEQ + : BRL --- : + ; } while (--rounds); DEC !rounds : BEQ + : BRL --- : + ; } while (--rounds);
PLP PLB : PLP
RTL RTL
; Note: uncomment any values from these tables that correspond to values of n actually in use
; (unused values are commented out to improve performance/ avoid wasting space)
.n_lookup
;db 52 ; n > 52
;db 26 ; n is 27 to 52
;db 17 ; n is 18 to 26
;db 13 ; n is 14 to 17
;db 10 ; n is 11 to 13
;db 8 ; n is 9 to 10
;db 7 ; n is 8
;db 6 ; n is 7
;db 5 ; n is 6
;db 4 ; n is 5
;db 3 ; n is 4
;db 2 ; n is 3
db 1 ; n is 2
.round_counts
;db 6 ; n > 52
;db 7 ; n is 27 to 52
;db 8 ; n is 18 to 26
;db 9 ; n is 14 to 17
;db 10 ; n is 11 to 13
;db 11 ; n is 9 to 10
;db 12 ; n is 8
;db 13 ; n is 7
;db 14 ; n is 6
;db 16 ; n is 5
;db 19 ; n is 4
;db 23 ; n is 3
db 32 ; n is 2
.initial_sums
;dd 6*$9e3779b9 ; n > 52
;dd 7*$9e3779b9 ; n is 27 to 52
;dd 8*$9e3779b9 ; n is 18 to 26
;dd 9*$9e3779b9 ; n is 14 to 17
;dd 10*$9e3779b9 ; n is 11 to 13
;dd 11*$9e3779b9 ; n is 9 to 10
;dd 12*$9e3779b9 ; n is 8
;dd 13*$9e3779b9 ; n is 7
;dd 14*$9e3779b9 ; n is 6
;dd 16*$9e3779b9 ; n is 5
;dd 19*$9e3779b9 ; n is 4
;dd 23*$9e3779b9 ; n is 3
dd 32*$9e3779b9 ; n is 2
;void btea(uint32_t *v, int n, uint32_t const key[4]) { ;void btea(uint32_t *v, int n, uint32_t const key[4]) {
; uint32_t y, z, sum; ; uint32_t y, z, sum;
; unsigned p, rounds, e; ; unsigned p, rounds, e;
@@ -195,47 +264,6 @@ RTL
; } while (--rounds); ; } while (--rounds);
; } ; }
.multiply
LDA #$00
STA !upperScratch+4 ;Clear upper half of
STA !upperScratch+5 ;!upperScratchuct
STA !upperScratch+6
STA !upperScratch+7
LDX #$20 ;Set binary count to 32
.shift_r
LSR !dpScratch+3 ;Shift multiplyer right
ROR !dpScratch+2
ROR !dpScratch+1
ROR !dpScratch
BCC .rotate_r ;Go rotate right if c = 0
LDA !upperScratch+4 ;Get upper half of !upperScratchuct
!ADD !rounds ; and add multiplicand to it
STA !upperScratch+4
LDA !upperScratch+5
ADC.w #$00
STA !upperScratch+5
LDA !upperScratch+6
ADC.w #$00
STA !upperScratch+6
LDA !upperScratch+7
ADC.w #$00
.rotate_r
ROR a ;Rotate partial !upperScratchuct
STA !upperScratch+7 ; right
ROR !upperScratch+6
ROR !upperScratch+5
ROR !upperScratch+4
ROR !upperScratch+3
ROR !upperScratch+2
ROR !upperScratch+1
ROR !upperScratch
DEX ;Decrement bit count and
BNE .shift_r ; loop until 32 bits are done
;LDA MULXP1 ;Add dps and put sum in MULXP2
;!ADD MULXP2
;STA MULXP2
RTS
;BTEA will encode or decode n words as a single block where n > 1 ;BTEA will encode or decode n words as a single block where n > 1
; ;
;v is the n word data vector ;v is the n word data vector
@@ -245,7 +273,6 @@ RTS
;assumes 32 bit 'long' and same endian coding and decoding ;assumes 32 bit 'long' and same endian coding and decoding
;#include <stdint.h> ;#include <stdint.h>
;#define DELTA 0x9e3779b9 ;#define DELTA 0x9e3779b9
;#define MX (((z>>5^y<<2) + (y>>3^z<<4)) ^ ((sum^y) + (key[(p&3)^e] ^ z)))
;#define MX ((((z>>5)^(y<<2)) + ((y>>3)^(z<<4))) ^ ((sum^y) + (key[(p&3)^e] ^ z))) ;#define MX ((((z>>5)^(y<<2)) + ((y>>3)^(z<<4))) ^ ((sum^y) + (key[(p&3)^e] ^ z)))
; ;
;void btea(uint32_t *v, int n, uint32_t const key[4]) { ;void btea(uint32_t *v, int n, uint32_t const key[4]) {

View File

@@ -47,7 +47,7 @@ ReturnCheckZSNES:
;org $0083D9 ; <- 3D9 - Bank00.asm : 611 (LDA $4219 : STA $01) ;org $0083D9 ; <- 3D9 - Bank00.asm : 611 (LDA $4219 : STA $01)
;JSL.l InvertDPad : NOP ;JSL.l InvertDPad : NOP
org $0083D4 ; <- 3D4 - Bank00.asm : 610 (LDA $4218 : STA $00) org $0083D4 ; <- 3D4 - Bank00.asm : 610 (LDA $4218 : STA $00)
JML.l InvertDPad : SKIP #6 JML.l InvertDPad : SKIP 6
InvertDPadReturn: InvertDPadReturn:
;-------------------------------------------------------------------------------- ;--------------------------------------------------------------------------------