import logging from collections import defaultdict, deque from BaseClasses import DoorType from Regions import dungeon_events, key_only_locations from Dungeons import dungeon_keys, dungeon_bigs from DungeonGenerator import ExplorationState class KeyLayout(object): def __init__(self, sector, starts, proposal): self.sector = sector self.start_regions = starts self.proposal = proposal self.key_logic = KeyLogic(sector.name) self.key_counters = None self.flat_prop = None self.max_chests = None self.max_drops = None self.all_chest_locations = {} self.big_key_special = False # bk special? # bk required? True if big chests or big doors exists def reset(self, proposal, builder, world, player): self.proposal = proposal self.flat_prop = flatten_pair_list(self.proposal) self.key_logic = KeyLogic(self.sector.name) self.max_chests = calc_max_chests(builder, self, world, player) class KeyLogic(object): def __init__(self, dungeon_name): self.door_rules = {} self.bk_restricted = set() self.sm_restricted = set() self.small_key_name = dungeon_keys[dungeon_name] self.bk_name = dungeon_bigs[dungeon_name] self.bk_doors = set() self.bk_chests = set() self.logic_min = {} self.logic_max = {} class DoorRules(object): def __init__(self, number, is_valid): self.small_key_num = number self.is_valid = is_valid # allowing a different number if bk is behind this door in a set of locations self.alternate_small_key = None self.alternate_big_key_loc = set() # for a place with only 1 free location/key_only_location behind it ... no goals and locations self.allow_small = False self.small_location = None class KeyCounter(object): def __init__(self, max_chests): self.max_chests = max_chests self.free_locations = {} self.key_only_locations = {} self.child_doors = {} self.open_doors = {} self.used_keys = 0 self.big_key_opened = False self.important_location = False self.other_locations = {} def used_smalls_loc(self, reserve=0): return max(self.used_keys + reserve - len(self.key_only_locations), 0) def copy(self): ret = KeyCounter(self.max_chests) ret.free_locations.update(self.free_locations) ret.key_only_locations.update(self.key_only_locations) ret.child_doors.update(self.child_doors) ret.used_keys = self.used_keys ret.open_doors.update(self.open_doors) ret.big_key_opened = self.big_key_opened ret.important_location = self.important_location return ret def build_key_layout(builder, start_regions, proposal, world, player): key_layout = KeyLayout(builder.master_sector, start_regions, proposal) key_layout.flat_prop = flatten_pair_list(key_layout.proposal) key_layout.max_drops = count_key_drops(key_layout.sector) key_layout.max_chests = calc_max_chests(builder, key_layout, world, player) key_layout.big_key_special = 'Hyrule Dungeon Cellblock' in key_layout.sector.region_set() return key_layout def calc_max_chests(builder, key_layout, world, player): if world.doorShuffle[player] != 'crossed': return len(world.get_dungeon(key_layout.sector.name, player).small_keys) return max(0, builder.key_doors_num - key_layout.max_drops) def analyze_dungeon(key_layout, world, player): key_layout.key_counters = create_key_counters(key_layout, world, player) key_logic = key_layout.key_logic find_bk_locked_sections(key_layout, world) key_logic.bk_chests.update(find_big_chest_locations(key_layout.all_chest_locations)) original_key_counter = find_counter({}, False, key_layout) queue = deque([(None, original_key_counter)]) doors_completed = set() visited_cid = set() visited_cid.add(cid(original_key_counter, key_layout)) while len(queue) > 0: queue = deque(sorted(queue, key=queue_sorter)) parent_door, key_counter = queue.popleft() chest_keys = available_chest_small_keys(key_counter, world, player) raw_avail = chest_keys + len(key_counter.key_only_locations) available = raw_avail - key_counter.used_keys possible_smalls = count_unique_small_doors(key_counter, key_layout.flat_prop) avail_bigs = exist_relevant_big_doors(key_counter, key_layout) non_big_locs = count_locations_big_optional(key_counter.free_locations) if not key_counter.big_key_opened: if chest_keys == non_big_locs and chest_keys > 0 and available <= possible_smalls and not avail_bigs: key_logic.bk_restricted.update(filter_big_chest(key_counter.free_locations)) if not key_counter.big_key_opened and big_chest_in_locations(key_counter.free_locations): key_logic.sm_restricted.update(find_big_chest_locations(key_counter.free_locations)) # todo: detect forced subsequent keys - see keypuzzles # try to relax the rules here? - smallest requirement that doesn't force a softlock child_queue = deque() smallest_rule = None for child in key_counter.child_doors.keys(): if not child.bigKey or not key_layout.big_key_special or key_counter.big_key_opened: odd_counter = create_odd_key_counter(child, key_counter, key_layout, world, player) empty_flag = empty_counter(odd_counter) child_queue.append((child, odd_counter, empty_flag)) if child in doors_completed and child in key_logic.door_rules.keys(): rule = key_logic.door_rules[child] if smallest_rule is None or rule.small_key_num < smallest_rule: smallest_rule = rule.small_key_num while len(child_queue) > 0: child, odd_counter, empty_flag = child_queue.popleft() if not child.bigKey and child not in doors_completed: best_counter = find_best_counter(child, odd_counter, key_counter, key_layout, world, player, False, empty_flag) rule = create_rule(best_counter, key_counter, key_layout, world, player) if not rule.is_valid: logging.getLogger('').warning('Key logic for door %s requires too many chests. Seed may be beatable anyway.', child.name) if smallest_rule is None or rule.small_key_num < smallest_rule: smallest_rule = rule.small_key_num check_for_self_lock_key(rule, child, best_counter, key_layout, world, player) bk_restricted_rules(rule, child, odd_counter, empty_flag, key_counter, key_layout, world, player) key_logic.door_rules[child.name] = rule doors_completed.add(child) next_counter = find_next_counter(child, key_counter, key_layout) ctr_id = cid(next_counter, key_layout) if ctr_id not in visited_cid: queue.append((child, next_counter)) visited_cid.add(ctr_id) possible_smalls_collected = len(key_counter.key_only_locations) + non_big_locs if not key_counter.big_key_opened: if smallest_rule is not None and smallest_rule >= possible_smalls_collected and not avail_bigs: key_logic.bk_restricted.update(filter_big_chest(key_counter.free_locations)) if not key_counter.big_key_opened and big_chest_in_locations(key_counter.free_locations): key_logic.sm_restricted.update(find_big_chest_locations(key_counter.free_locations)) check_rules(original_key_counter, key_layout, world, player) # Flip bk rules if more restrictive, to prevent placing a big key in a softlocking location for rule in key_logic.door_rules.values(): if rule.alternate_small_key is not None and rule.alternate_small_key > rule.small_key_num: max_counter = find_max_counter(key_layout) rule.alternate_big_key_loc = set(max_counter.free_locations.keys()).difference(rule.alternate_big_key_loc) rule.small_key_num, rule.alternate_small_key = rule.alternate_small_key, rule.small_key_num def count_key_drops(sector): cnt = 0 for region in sector.regions: for loc in region.locations: if loc.event and 'Small Key' in loc.item.name: cnt += 1 return cnt def queue_sorter(queue_item): door, counter = queue_item if door is None: return 0 return 1 if door.bigKey else 0 def queue_sorter_2(queue_item): door, counter, key_only = queue_item if door is None: return 0 return 1 if door.bigKey else 0 def find_bk_locked_sections(key_layout, world): if key_layout.big_key_special: return key_counters = key_layout.key_counters key_logic = key_layout.key_logic bk_key_not_required = set() big_chest_allowed_big_key = world.accessibility != 'locations' for counter in key_counters.values(): key_layout.all_chest_locations.update(counter.free_locations) if counter.big_key_opened and counter.important_location: big_chest_allowed_big_key = False if not counter.big_key_opened: bk_key_not_required.update(counter.free_locations) key_logic.bk_restricted.update(dict.fromkeys(set(key_layout.all_chest_locations).difference(bk_key_not_required))) if not big_chest_allowed_big_key: key_logic.bk_restricted.update(find_big_chest_locations(key_layout.all_chest_locations)) def empty_counter(counter): if len(counter.key_only_locations) != 0 or len(counter.free_locations) != 0 or len(counter.child_doors) != 0: return False return not counter.important_location def relative_empty_counter(odd_counter, key_counter): if len(set(odd_counter.key_only_locations).difference(key_counter.key_only_locations)) > 0: return False if len(set(odd_counter.free_locations).difference(key_counter.free_locations)) > 0: return False new_child_door = False for child in odd_counter.child_doors: if unique_child_door(child, key_counter): new_child_door = True break if new_child_door: return False return True def unique_child_door(child, key_counter): if child in key_counter.child_doors or child.dest in key_counter.child_doors: return False if child in key_counter.open_doors or child.dest in key_counter.child_doors: return False if child.bigKey and key_counter.big_key_opened: return False return True def find_best_counter(door, odd_counter, key_counter, key_layout, world, player, skip_bk, empty_flag): # try to waste as many keys as possible? ignored_doors = {door, door.dest} if door is not None else {} finished = False opened_doors = dict(key_counter.open_doors) bk_opened = key_counter.big_key_opened # new_counter = key_counter last_counter = key_counter while not finished: door_set = find_potential_open_doors(last_counter, ignored_doors, key_layout, skip_bk) if door_set is None or len(door_set) == 0: finished = True continue for new_door in door_set: proposed_doors = {**opened_doors, **dict.fromkeys([new_door, new_door.dest])} bk_open = bk_opened or new_door.bigKey new_counter = find_counter(proposed_doors, bk_open, key_layout) bk_open = new_counter.big_key_opened # this means the new_door invalidates the door / leads to the same stuff if not empty_flag and relative_empty_counter(odd_counter, new_counter): ignored_doors.add(new_door) elif empty_flag or key_wasted(new_door, door, last_counter, new_counter, key_layout, world, player): last_counter = new_counter opened_doors = proposed_doors bk_opened = bk_open else: ignored_doors.add(new_door) return last_counter def find_potential_open_doors(key_counter, ignored_doors, key_layout, skip_bk): small_doors = [] big_doors = [] for other in key_counter.child_doors: if other not in ignored_doors and other.dest not in ignored_doors: if other.bigKey: if not skip_bk and (not key_layout.big_key_special or key_counter.big_key_opened): big_doors.append(other) elif other.dest not in small_doors: small_doors.append(other) if key_layout.big_key_special: big_key_available = key_counter.big_key_opened else: big_key_available = len(key_counter.free_locations) - key_counter.used_smalls_loc(1) > 0 if len(small_doors) == 0 and (not skip_bk and (len(big_doors) == 0 or not big_key_available)): return None return small_doors + big_doors def key_wasted(new_door, old_door, old_counter, new_counter, key_layout, world, player): if new_door.bigKey: # big keys are not wastes - it uses up a location return True chest_keys = available_chest_small_keys(old_counter, world, player) old_key_diff = len(old_counter.key_only_locations) - old_counter.used_keys old_avail = chest_keys + old_key_diff new_chest_keys = available_chest_small_keys(new_counter, world, player) new_key_diff = len(new_counter.key_only_locations) - new_counter.used_keys new_avail = new_chest_keys + new_key_diff if new_key_diff < old_key_diff or new_avail < old_avail: return True if new_avail >= old_avail: wasted_keys = 0 old_children = old_counter.child_doors.keys() new_children = [x for x in new_counter.child_doors.keys() if x != old_door and x.dest != old_door and (not x.bigKey or x not in old_children)] current_counter = new_counter opened_doors = dict(current_counter.open_doors) bk_opened = current_counter.big_key_opened for new_child in new_children: proposed_doors = {**opened_doors, **dict.fromkeys([new_child, new_child.dest])} bk_open = bk_opened or new_door.bigKey new_counter = find_counter(proposed_doors, bk_open, key_layout) if key_wasted(new_child, old_door, current_counter, new_counter, key_layout, world, player): wasted_keys += 1 if new_avail - wasted_keys < old_avail: return True # waste is possible return False def find_next_counter(new_door, old_counter, key_layout): proposed_doors = {**old_counter.open_doors, **dict.fromkeys([new_door, new_door.dest])} bk_open = old_counter.big_key_opened or new_door.bigKey return find_counter(proposed_doors, bk_open, key_layout) def check_special_locations(locations): for loc in locations: if loc.name == 'Hyrule Castle - Zelda\'s Chest': return True return False def calc_avail_keys(key_counter, world, player): chest_keys = available_chest_small_keys(key_counter, world, player) raw_avail = chest_keys + len(key_counter.key_only_locations) return raw_avail - key_counter.used_keys def create_rule(key_counter, prev_counter, key_layout, world, player): # prev_chest_keys = available_chest_small_keys(prev_counter, world) # prev_avail = prev_chest_keys + len(prev_counter.key_only_locations) chest_keys = available_chest_small_keys(key_counter, world, player) key_gain = len(key_counter.key_only_locations) - len(prev_counter.key_only_locations) # previous method # raw_avail = chest_keys + len(key_counter.key_only_locations) # available = raw_avail - key_counter.used_keys # possible_smalls = count_unique_small_doors(key_counter, key_layout.flat_prop) # required_keys = min(available, possible_smalls) + key_counter.used_keys required_keys = key_counter.used_keys + 1 # this makes more sense, if key_counter has wasted all keys adj_chest_keys = min(chest_keys, required_keys) needed_chests = required_keys - len(key_counter.key_only_locations) is_valid = needed_chests <= chest_keys unneeded_chests = min(key_gain, max(0, adj_chest_keys - needed_chests)) rule_num = required_keys - unneeded_chests return DoorRules(rule_num, is_valid) def check_for_self_lock_key(rule, door, parent_counter, key_layout, world, player): if world.accessibility != 'locations': counter = find_inverted_counter(door, parent_counter, key_layout, world, player) if not self_lock_possible(counter): return if len(counter.free_locations) == 1 and len(counter.key_only_locations) == 0 and not counter.important_location: rule.allow_small = True rule.small_location = next(iter(counter.free_locations)) def find_inverted_counter(door, parent_counter, key_layout, world, player): # open all doors in counter counter = open_all_counter(parent_counter, key_layout, door=door) max_counter = find_max_counter(key_layout) # find the difference inverted_counter = KeyCounter(key_layout.max_chests) inverted_counter.free_locations = dict_difference(max_counter.free_locations, counter.free_locations) inverted_counter.key_only_locations = dict_difference(max_counter.key_only_locations, counter.key_only_locations) # child doors? used_keys? # inverted_counter.child_doors = dict_difference(max_counter.child_doors, counter.child_doors) inverted_counter.open_doors = dict_difference(max_counter.open_doors, counter.open_doors) inverted_counter.other_locations = dict_difference(max_counter.other_locations, counter.other_locations) for loc in inverted_counter.other_locations: if important_location(loc, world, player): inverted_counter.important_location = True return inverted_counter def open_all_counter(parent_counter, key_layout, door=None, skipBk=False): changed = True counter = parent_counter proposed_doors = dict.fromkeys(parent_counter.open_doors.keys()) while changed: changed = False doors_to_open = {} for child in counter.child_doors: if door is None or (child != door and child != door.dest): if skipBk: if not child.bigKey: doors_to_open[child] = None elif not child.bigKey or not key_layout.big_key_special or counter.big_key_opened: doors_to_open[child] = None if len(doors_to_open.keys()) > 0: proposed_doors = {**proposed_doors, **doors_to_open} bk_hint = counter.big_key_opened for d in doors_to_open.keys(): bk_hint = bk_hint or d.bigKey counter = find_counter(proposed_doors, bk_hint, key_layout) changed = True return counter def open_some_counter(parent_counter, key_layout, ignored_doors): changed = True counter = parent_counter proposed_doors = dict.fromkeys(parent_counter.open_doors.keys()) while changed: changed = False doors_to_open = {} for child in counter.child_doors: if child not in ignored_doors: if not child.bigKey: doors_to_open[child] = None if len(doors_to_open.keys()) > 0: proposed_doors = {**proposed_doors, **doors_to_open} bk_hint = counter.big_key_opened for d in doors_to_open.keys(): bk_hint = bk_hint or d.bigKey counter = find_counter(proposed_doors, bk_hint, key_layout) changed = True return counter def self_lock_possible(counter): return len(counter.free_locations) <= 1 and len(counter.key_only_locations) == 0 and not counter.important_location def available_chest_small_keys(key_counter, world, player): if not world.keyshuffle[player] and not world.retro[player]: cnt = 0 for loc in key_counter.free_locations: if key_counter.big_key_opened or '- Big Chest' not in loc.name: cnt += 1 return min(cnt, key_counter.max_chests) else: return key_counter.max_chests def available_chest_small_keys_logic(key_counter, world, player, sm_restricted): if not world.keyshuffle[player] and not world.retro[player]: cnt = 0 for loc in key_counter.free_locations: if loc not in sm_restricted and (key_counter.big_key_opened or '- Big Chest' not in loc.name): cnt += 1 return min(cnt, key_counter.max_chests) else: return key_counter.max_chests def bk_restricted_rules(rule, door, odd_counter, empty_flag, key_counter, key_layout, world, player): if key_counter.big_key_opened: return best_counter = find_best_counter(door, odd_counter, key_counter, key_layout, world, player, True, empty_flag) bk_rule = create_rule(best_counter, key_counter, key_layout, world, player) if bk_rule.small_key_num >= rule.small_key_num: return door_open = find_next_counter(door, best_counter, key_layout) ignored_doors = dict_intersection(best_counter.child_doors, door_open.child_doors) dest_ignored = [] for door in ignored_doors.keys(): if door.dest not in ignored_doors: dest_ignored.append(door.dest) ignored_doors = {**ignored_doors, **dict.fromkeys(dest_ignored)} post_counter = open_some_counter(door_open, key_layout, ignored_doors.keys()) unique_loc = dict_difference(post_counter.free_locations, best_counter.free_locations) # todo: figure out the intention behind this change - better way to detect the big key is blocking needed key onlys? if len(unique_loc) > 0: # and bk_rule.is_valid rule.alternate_small_key = bk_rule.small_key_num rule.alternate_big_key_loc.update(unique_loc) # elif not bk_rule.is_valid: # key_layout.key_logic.bk_restricted.update(unique_loc) def open_a_door(door, child_state, flat_proposal): if door.bigKey: child_state.big_key_opened = True child_state.avail_doors.extend(child_state.big_doors) child_state.opened_doors.extend(set([d.door for d in child_state.big_doors])) child_state.big_doors.clear() else: child_state.opened_doors.append(door) doors_to_open = [x for x in child_state.small_doors if x.door == door] child_state.small_doors[:] = [x for x in child_state.small_doors if x.door != door] child_state.avail_doors.extend(doors_to_open) dest_door = door.dest if dest_door in flat_proposal and door.type != DoorType.SpiralStairs: child_state.opened_doors.append(dest_door) if child_state.in_door_list_ic(dest_door, child_state.small_doors): now_available = [x for x in child_state.small_doors if x.door == dest_door] child_state.small_doors[:] = [x for x in child_state.small_doors if x.door != dest_door] child_state.avail_doors.extend(now_available) # allows dest doors def unique_doors(doors): unique_d_set = [] for d in doors: if d.door not in unique_d_set: unique_d_set.append(d.door) return unique_d_set # does not allow dest doors def count_unique_sm_doors(doors): unique_d_set = set() for d in doors: if d not in unique_d_set and d.dest not in unique_d_set and not d.bigKey: unique_d_set.add(d) return len(unique_d_set) # doesn't count dest doors def count_unique_small_doors(key_counter, proposal): cnt = 0 counted = set() for door in key_counter.child_doors: if door in proposal and door not in counted: cnt += 1 counted.add(door) counted.add(door.dest) return cnt def exist_relevant_big_doors(key_counter, key_layout): bk_counter = find_counter(key_counter.open_doors, True, key_layout, False) if bk_counter is not None: diff = dict_difference(bk_counter.free_locations, key_counter.free_locations) if len(diff) > 0: return True diff = dict_difference(bk_counter.key_only_locations, key_counter.key_only_locations) if len(diff) > 0: return True diff = dict_difference(bk_counter.child_doors, key_counter.child_doors) if len(diff) > 0: return True return False def count_locations_big_optional(locations, bk=False): cnt = 0 for loc in locations: if bk or '- Big Chest' not in loc.name: cnt += 1 return cnt def filter_big_chest(locations): return [x for x in locations if '- Big Chest' not in x.name] def count_free_locations(state): cnt = 0 for loc in state.found_locations: if '- Prize' not in loc.name and loc.name not in dungeon_events and loc.name not in key_only_locations and loc.name not in ['Agahnim 1', 'Agahnim 2', 'Hyrule Castle - Big Key Drop']: cnt += 1 return cnt def count_locations_exclude_big_chest(state): cnt = 0 for loc in state.found_locations: if '- Big Chest' not in loc.name and '- Prize' not in loc.name and loc.name not in dungeon_events and loc.name not in key_only_locations and loc.name not in ['Agahnim 1', 'Agahnim 2', 'Hyrule Castle - Big Key Drop']: cnt += 1 return cnt def count_key_only_locations(state): cnt = 0 for loc in state.found_locations: if loc.name in key_only_locations: cnt += 1 return cnt def big_chest_in_locations(locations): return len(find_big_chest_locations(locations)) > 0 def find_big_chest_locations(locations): ret = [] for loc in locations: if 'Big Chest' in loc.name: ret.append(loc) return ret def expand_key_state(state, flat_proposal, world, player): while len(state.avail_doors) > 0: exp_door = state.next_avail_door() door = exp_door.door connect_region = world.get_entrance(door.name, player).connected_region if state.validate(door, connect_region, world, player): state.visit_region(connect_region, key_checks=True) state.add_all_doors_check_keys(connect_region, flat_proposal, world, player) def flatten_pair_list(paired_list): flat_list = [] for d in paired_list: if type(d) is tuple: flat_list.append(d[0]) flat_list.append(d[1]) else: flat_list.append(d) return flat_list def check_rules(original_counter, key_layout, world, player): all_key_only = set() key_only_map = {} queue = deque([(None, original_counter, original_counter.key_only_locations)]) completed = set() completed.add(cid(original_counter, key_layout)) while len(queue) > 0: queue = deque(sorted(queue, key=queue_sorter_2)) access_door, counter, key_only_loc = queue.popleft() for loc in key_only_loc: if loc not in all_key_only: all_key_only.add(loc) access_rules = [] key_only_map[loc] = access_rules else: access_rules = key_only_map[loc] if access_door is None or access_door.name not in key_layout.key_logic.door_rules.keys(): if access_door is None or not access_door.bigKey: access_rules.append(DoorRules(0, True)) else: rule = key_layout.key_logic.door_rules[access_door.name] if rule not in access_rules: access_rules.append(rule) for child in counter.child_doors.keys(): if not child.bigKey or not key_layout.big_key_special or counter.big_key_opened: next_counter = find_next_counter(child, counter, key_layout) c_id = cid(next_counter, key_layout) if c_id not in completed: completed.add(c_id) new_key_only = dict_difference(next_counter.key_only_locations, counter.key_only_locations) queue.append((child, next_counter, new_key_only)) min_rule_bk = defaultdict(list) min_rule_non_bk = defaultdict(list) check_non_bk = False for loc, rule_list in key_only_map.items(): m_bk = None m_nbk = None for rule in rule_list: if m_bk is None or rule.small_key_num <= m_bk: min_rule_bk[loc].append(rule) m_bk = rule.small_key_num if rule.alternate_small_key is None: ask = rule.small_key_num else: check_non_bk = True ask = rule.alternate_small_key if m_nbk is None or ask <= m_nbk: min_rule_non_bk[loc].append(rule) m_nbk = rule.alternate_small_key adjust_key_location_mins(key_layout, min_rule_bk, lambda r: r.small_key_num, lambda r, v: setattr(r, 'small_key_num', v)) if check_non_bk: adjust_key_location_mins(key_layout, min_rule_non_bk, lambda r: r.small_key_num if r.alternate_small_key is None else r.alternate_small_key, lambda r, v: r if r.alternate_small_key is None else setattr(r, 'alternate_small_key', v)) check_rules_deep(original_counter, key_layout, world, player) def adjust_key_location_mins(key_layout, min_rules, getter, setter): collected_keys = key_layout.max_chests collected_locs = set() changed = True while changed: changed = False for_removal = [] for loc, rules in min_rules.items(): if loc in collected_locs: for_removal.append(loc) for rule in rules: if getter(rule) <= collected_keys and loc not in collected_locs: changed = True collected_keys += 1 collected_locs.add(loc) for_removal.append(loc) for loc in for_removal: del min_rules[loc] if len(min_rules) > 0: for loc, rules in min_rules.items(): for rule in rules: setter(rule, collected_keys) def check_rules_deep(original_counter, key_layout, world, player): key_logic = key_layout.key_logic big_locations = {x for x in key_layout.all_chest_locations if x not in key_logic.bk_restricted} queue = deque([original_counter]) completed = set() completed.add(cid(original_counter, key_layout)) last_counter = None bail = 0 while len(queue) > 0: counter = queue.popleft() if counter == last_counter: bail += 1 if bail > 10: raise Exception('Key logic issue, during deep rule check: %s' % key_layout.sector.name) else: bail = 0 last_counter = counter chest_keys = available_chest_small_keys_logic(counter, world, player, key_logic.sm_restricted) big_avail = counter.big_key_opened big_maybe_not_found = not counter.big_key_opened if not key_layout.big_key_special and not big_avail: for location in counter.free_locations: if location not in key_logic.bk_restricted: big_avail = True break outstanding_big_locs = {x for x in big_locations if x not in counter.free_locations} if big_maybe_not_found: if len(outstanding_big_locs) == 0: big_maybe_not_found = False big_uses_chest = big_avail and not key_layout.big_key_special collected_alt = len(counter.key_only_locations) + chest_keys if big_uses_chest and chest_keys == count_locations_big_optional(counter.free_locations, counter.big_key_opened): chest_keys -= 1 collected = len(counter.key_only_locations) + chest_keys can_progress = len(counter.child_doors) == 0 smalls_opened = False small_rules = [] for door in counter.child_doors.keys(): can_open = False if door.bigKey and big_avail: can_open = True elif door.name in key_logic.door_rules.keys(): rule = key_logic.door_rules[door.name] small_rules.append(rule) if rule_satisfied(rule, collected, collected_alt, outstanding_big_locs, chest_keys, key_layout): can_open = True smalls_opened = True elif not door.bigKey: can_open = True if can_open: can_progress = smalls_opened or not big_maybe_not_found next_counter = find_next_counter(door, counter, key_layout) c_id = cid(next_counter, key_layout) if c_id not in completed: completed.add(c_id) queue.append(next_counter) if not can_progress: if len(small_rules) > 0: # zero could be indicative of a problem, but also, the big key is now required reduce_rules(small_rules, collected, collected_alt) queue.append(counter) # run it through again else: raise Exception('Possible problem with generation or bk rules') def rule_satisfied(rule, collected, collected_alt, outstanding_big_locs, chest_keys, key_layout): if collected >= rule.small_key_num: return True if rule.allow_small and collected >= rule.small_key_num-1 and chest_keys < key_layout.max_chests: return True rule_diff = outstanding_big_locs.difference(rule.alternate_big_key_loc) if rule.alternate_small_key is not None and len(rule_diff) == 0 and collected >= rule.alternate_small_key: return True if collected_alt > collected: if collected_alt >= rule.small_key_num: return True if rule.allow_small and collected_alt >= rule.small_key_num-1 and chest_keys+1 < key_layout.max_chests: return True if rule.alternate_small_key is not None and len(rule_diff) == 0 and collected_alt >= rule.alternate_small_key: return True return False def reduce_rules(small_rules, collected, collected_alt): smallest_rules = [] min_num = None for rule in small_rules: if min_num is None or rule.small_key_num <= min_num: if min_num is not None and rule.small_key_num < min_num: min_num = rule.small_key_num smallest_rules.clear() elif min_num is None: min_num = rule.small_key_num smallest_rules.append(rule) for rule in smallest_rules: if rule.allow_small: # we are already reducing it rule.allow_small = False if min_num > collected_alt > collected: rule.small_key_num = collected_alt else: rule.small_key_num = collected # Soft lock stuff def validate_key_layout(key_layout, world, player): if world.retro[player]: # retro is all good - don't care how the doors are laid out return True flat_proposal = key_layout.flat_prop state = ExplorationState(dungeon=key_layout.sector.name) state.key_locations = key_layout.max_chests state.big_key_special = world.get_region('Hyrule Dungeon Cellblock', player) in key_layout.sector.regions for region in key_layout.start_regions: state.visit_region(region, key_checks=True) state.add_all_doors_check_keys(region, flat_proposal, world, player) return validate_key_layout_sub_loop(key_layout, state, {}, flat_proposal, world, player) def validate_key_layout_sub_loop(key_layout, state, checked_states, flat_proposal, world, player): expand_key_state(state, flat_proposal, world, player) smalls_avail = len(state.small_doors) > 0 # de-dup crystal repeats num_bigs = 1 if len(state.big_doors) > 0 else 0 # all or nothing if not smalls_avail and num_bigs == 0: return True # I think that's the end # todo: fix state to separate out these types ttl_locations = count_free_locations(state) if state.big_key_opened else count_locations_exclude_big_chest(state) ttl_key_only = count_key_only_locations(state) available_small_locations = cnt_avail_small_locations(ttl_locations, ttl_key_only, state, world, player) available_big_locations = cnt_avail_big_locations(ttl_locations, state, world, player) if (not smalls_avail or available_small_locations == 0) and (state.big_key_opened or num_bigs == 0 or available_big_locations == 0): return False else: if smalls_avail and available_small_locations > 0: for exp_door in state.small_doors: state_copy = state.copy() open_a_door(exp_door.door, state_copy, flat_proposal) state_copy.used_smalls += 1 if state_copy.used_smalls > ttl_key_only: state_copy.used_locations += 1 code = state_id(state_copy, flat_proposal) if code not in checked_states.keys(): valid = validate_key_layout_sub_loop(key_layout, state_copy, checked_states, flat_proposal, world, player) checked_states[code] = valid else: valid = checked_states[code] if not valid: return False if not state.big_key_opened and available_big_locations >= num_bigs > 0: state_copy = state.copy() open_a_door(state.big_doors[0].door, state_copy, flat_proposal) state_copy.used_locations += 1 code = state_id(state_copy, flat_proposal) if code not in checked_states.keys(): valid = validate_key_layout_sub_loop(key_layout, state_copy, checked_states, flat_proposal, world, player) checked_states[code] = valid else: valid = checked_states[code] if not valid: return False return True def cnt_avail_small_locations(free_locations, key_only, state, world, player): if not world.keyshuffle[player] and not world.retro[player]: avail_chest_keys = min(free_locations - state.used_locations + state.used_smalls, state.key_locations - key_only) return max(0, avail_chest_keys + key_only - state.used_smalls) return state.key_locations - state.used_smalls def cnt_avail_big_locations(ttl_locations, state, world, player): if not world.bigkeyshuffle[player]: return max(0, ttl_locations - state.used_locations) if not state.big_key_special else 0 return 1 if not state.big_key_special else 0 def create_key_counters(key_layout, world, player): key_counters = {} flat_proposal = key_layout.flat_prop state = ExplorationState(dungeon=key_layout.sector.name) state.key_locations = len(world.get_dungeon(key_layout.sector.name, player).small_keys) state.big_key_special = world.get_region('Hyrule Dungeon Cellblock', player) in key_layout.sector.regions for region in key_layout.start_regions: state.visit_region(region, key_checks=True) state.add_all_doors_check_keys(region, flat_proposal, world, player) expand_key_state(state, flat_proposal, world, player) code = state_id(state, key_layout.flat_prop) key_counters[code] = create_key_counter(state, key_layout, world, player) queue = deque([(key_counters[code], state)]) while len(queue) > 0: next_key_counter, parent_state = queue.popleft() for door in next_key_counter.child_doors: child_state = parent_state.copy() if door.bigKey: key_layout.key_logic.bk_doors.add(door) # open the door, if possible if not door.bigKey or not child_state.big_key_special or child_state.big_key_opened: open_a_door(door, child_state, flat_proposal) expand_key_state(child_state, flat_proposal, world, player) code = state_id(child_state, key_layout.flat_prop) if code not in key_counters.keys(): child_kr = create_key_counter(child_state, key_layout, world, player) key_counters[code] = child_kr queue.append((child_kr, child_state)) return key_counters def create_key_counter(state, key_layout, world, player): key_counter = KeyCounter(key_layout.max_chests) key_counter.child_doors.update(dict.fromkeys(unique_doors(state.small_doors+state.big_doors))) for loc in state.found_locations: if important_location(loc, world, player): key_counter.important_location = True key_counter.other_locations[loc] = None elif loc.event and 'Small Key' in loc.item.name: key_counter.key_only_locations[loc] = None elif loc.name not in dungeon_events: key_counter.free_locations[loc] = None else: key_counter.other_locations[loc] = None key_counter.open_doors.update(dict.fromkeys(state.opened_doors)) key_counter.used_keys = count_unique_sm_doors(state.opened_doors) if state.big_key_special: key_counter.big_key_opened = state.visited(world.get_region('Hyrule Dungeon Cellblock', player)) else: key_counter.big_key_opened = state.big_key_opened # if soft_lock_check: # avail_chests = available_chest_small_keys(key_counter, key_counter.big_key_opened, world) # avail_keys = avail_chests + len(key_counter.key_only_locations) # if avail_keys <= key_counter.used_keys and avail_keys < key_layout.max_chests + key_layout.max_drops: # raise SoftLockException() return key_counter def important_location(loc, world, player): important_locations = ['Agahnim 1', 'Agahnim 2', 'Attic Cracked Floor', 'Suspicious Maiden'] if world.mode[player] == 'standard' or world.doorShuffle[player] == 'crossed': important_locations.append('Hyrule Dungeon Cellblock') return '- Prize' in loc.name or loc.name in important_locations def create_odd_key_counter(door, parent_counter, key_layout, world, player): odd_counter = KeyCounter(key_layout.max_chests) next_counter = find_next_counter(door, parent_counter, key_layout) odd_counter.free_locations = dict_difference(next_counter.free_locations, parent_counter.free_locations) odd_counter.key_only_locations = dict_difference(next_counter.key_only_locations, parent_counter.key_only_locations) odd_counter.child_doors = dict_difference(next_counter.child_doors, parent_counter.child_doors) odd_counter.other_locations = dict_difference(next_counter.other_locations, parent_counter.other_locations) for loc in odd_counter.other_locations: if important_location(loc, world, player): odd_counter.important_location = True return odd_counter def dict_difference(dict_a, dict_b): return dict.fromkeys([x for x in dict_a.keys() if x not in dict_b.keys()]) def dict_intersection(dict_a, dict_b): return dict.fromkeys([x for x in dict_a.keys() if x in dict_b.keys()]) def state_id(state, flat_proposal): s_id = '1' if state.big_key_opened else '0' for d in flat_proposal: s_id += '1' if d in state.opened_doors else '0' return s_id def find_counter(opened_doors, bk_hint, key_layout, raise_on_error=True): counter = find_counter_hint(opened_doors, bk_hint, key_layout) if counter is not None: return counter more_doors = [] for door in opened_doors.keys(): more_doors.append(door) if door.dest not in opened_doors.keys(): more_doors.append(door.dest) if len(more_doors) > len(opened_doors.keys()): counter = find_counter_hint(dict.fromkeys(more_doors), bk_hint, key_layout) if counter is not None: return counter if raise_on_error: raise Exception('Unable to find door permutation. Init CID: %s' % counter_id(opened_doors, bk_hint, key_layout.flat_prop)) return None def find_counter_hint(opened_doors, bk_hint, key_layout): cid = counter_id(opened_doors, bk_hint, key_layout.flat_prop) if cid in key_layout.key_counters.keys(): return key_layout.key_counters[cid] if not bk_hint: cid = counter_id(opened_doors, True, key_layout.flat_prop) if cid in key_layout.key_counters.keys(): return key_layout.key_counters[cid] return None def find_max_counter(key_layout): max_counter = find_counter_hint(dict.fromkeys(key_layout.flat_prop), False, key_layout) if len(max_counter.child_doors) > 0: max_counter = find_counter_hint(dict.fromkeys(key_layout.flat_prop), True, key_layout) return max_counter def counter_id(opened_doors, bk_unlocked, flat_proposal): s_id = '1' if bk_unlocked else '0' for d in flat_proposal: s_id += '1' if d in opened_doors.keys() else '0' return s_id def cid(counter, key_layout): return counter_id(counter.open_doors, counter.big_key_opened, key_layout.flat_prop) # class SoftLockException(Exception): # pass # vanilla validation code def validate_vanilla_key_logic(world, player): validators = { 'Hyrule Castle': val_hyrule, 'Eastern Palace': val_eastern, 'Desert Palace': val_desert, 'Tower of Hera': val_hera, 'Agahnims Tower': val_tower, 'Palace of Darkness': val_pod, 'Swamp Palace': val_swamp, 'Skull Woods': val_skull, 'Thieves Town': val_thieves, 'Ice Palace': val_ice, 'Misery Mire': val_mire, 'Turtle Rock': val_turtle, 'Ganons Tower': val_ganons } key_logic_dict = world.key_logic[player] for key, key_logic in key_logic_dict.items(): validators[key](key_logic, world, player) def val_hyrule(key_logic, world, player): if world.mode[player] == 'standard': val_rule(key_logic.door_rules['Hyrule Dungeon Map Room Key Door S'], 1) val_rule(key_logic.door_rules['Hyrule Dungeon Armory Interior Key Door N'], 2) val_rule(key_logic.door_rules['Sewers Dark Cross Key Door N'], 3) val_rule(key_logic.door_rules['Sewers Key Rat Key Door N'], 4) else: val_rule(key_logic.door_rules['Sewers Secret Room Key Door S'], 2) val_rule(key_logic.door_rules['Sewers Dark Cross Key Door N'], 2) val_rule(key_logic.door_rules['Hyrule Dungeon Map Room Key Door S'], 2) val_rule(key_logic.door_rules['Hyrule Dungeon Armory Interior Key Door N'], 4) def val_eastern(key_logic, world, player): val_rule(key_logic.door_rules['Eastern Dark Square Key Door WN'], 2, True, 'Eastern Palace - Big Key Chest', 1, {'Eastern Palace - Big Key Chest'}) val_rule(key_logic.door_rules['Eastern Darkness Up Stairs'], 2) assert world.get_location('Eastern Palace - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Eastern Palace - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_desert(key_logic, world, player): val_rule(key_logic.door_rules['Desert East Wing Key Door EN'], 4) val_rule(key_logic.door_rules['Desert Tiles 1 Up Stairs'], 2) val_rule(key_logic.door_rules['Desert Beamos Hall NE'], 3) val_rule(key_logic.door_rules['Desert Tiles 2 NE'], 4) assert world.get_location('Desert Palace - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Desert Palace - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_hera(key_logic, world, player): val_rule(key_logic.door_rules['Hera Lobby Key Stairs'], 1, True, 'Tower of Hera - Big Key Chest') assert world.get_location('Tower of Hera - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Tower of Hera - Compass Chest', player) in key_logic.bk_restricted assert world.get_location('Tower of Hera - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 3 def val_tower(key_logic, world, player): val_rule(key_logic.door_rules['Tower Room 03 Up Stairs'], 1) val_rule(key_logic.door_rules['Tower Dark Maze ES'], 2) val_rule(key_logic.door_rules['Tower Dark Archers Up Stairs'], 3) val_rule(key_logic.door_rules['Tower Circle of Pots WS'], 4) def val_pod(key_logic, world, player): val_rule(key_logic.door_rules['PoD Arena Main NW'], 4) val_rule(key_logic.door_rules['PoD Basement Ledge Up Stairs'], 6, True, 'Palace of Darkness - Big Key Chest') val_rule(key_logic.door_rules['PoD Compass Room SE'], 6, True, 'Palace of Darkness - Harmless Hellway') val_rule(key_logic.door_rules['PoD Falling Bridge WN'], 6) val_rule(key_logic.door_rules['PoD Dark Pegs WN'], 6) assert world.get_location('Palace of Darkness - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Palace of Darkness - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_swamp(key_logic, world, player): val_rule(key_logic.door_rules['Swamp Entrance Down Stairs'], 1) val_rule(key_logic.door_rules['Swamp Pot Row WS'], 2) val_rule(key_logic.door_rules['Swamp Trench 1 Key Ledge NW'], 3) val_rule(key_logic.door_rules['Swamp Hub North Ledge N'], 5) val_rule(key_logic.door_rules['Swamp Hub WN'], 6) val_rule(key_logic.door_rules['Swamp Waterway NW'], 6) assert world.get_location('Swamp Palace - Entrance', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 1 def val_skull(key_logic, world, player): val_rule(key_logic.door_rules['Skull 3 Lobby NW'], 4) val_rule(key_logic.door_rules['Skull Spike Corner ES'], 5) def val_thieves(key_logic, world, player): val_rule(key_logic.door_rules['Thieves Hallway WS'], 1) val_rule(key_logic.door_rules['Thieves Spike Switch Up Stairs'], 3) val_rule(key_logic.door_rules['Thieves Conveyor Bridge WS'], 3, True, 'Thieves\' Town - Big Chest') assert world.get_location('Thieves\' Town - Attic', player) in key_logic.bk_restricted assert world.get_location('Thieves\' Town - Boss', player) in key_logic.bk_restricted assert world.get_location('Thieves\' Town - Blind\'s Cell', player) in key_logic.bk_restricted assert world.get_location('Thieves\' Town - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 4 def val_ice(key_logic, world, player): val_rule(key_logic.door_rules['Ice Jelly Key Down Stairs'], 1) val_rule(key_logic.door_rules['Ice Conveyor SW'], 2) val_rule(key_logic.door_rules['Ice Backwards Room Down Stairs'], 5) assert world.get_location('Ice Palace - Boss', player) in key_logic.bk_restricted assert world.get_location('Ice Palace - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_mire(key_logic, world, player): mire_west_wing = {'Misery Mire - Big Key Chest', 'Misery Mire - Compass Chest'} val_rule(key_logic.door_rules['Mire Spikes NW'], 3) # todo: is sometimes 3 or 5? best_counter order matters # val_rule(key_logic.door_rules['Mire Spike Barrier NE'], 4) # kind of a waste mostly val_rule(key_logic.door_rules['Mire Hub WS'], 5, False, None, 3, mire_west_wing) val_rule(key_logic.door_rules['Mire Conveyor Crystal WS'], 6, False, None, 4, mire_west_wing) assert world.get_location('Misery Mire - Boss', player) in key_logic.bk_restricted assert world.get_location('Misery Mire - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_turtle(key_logic, world, player): # todo: check vanilla key logic when TR back doors are accessible if world.shuffle[player] == 'vanilla' and world.mode[player] != 'inverted': val_rule(key_logic.door_rules['TR Hub NW'], 1) val_rule(key_logic.door_rules['TR Pokey 1 NW'], 2) val_rule(key_logic.door_rules['TR Chain Chomps Down Stairs'], 3) val_rule(key_logic.door_rules['TR Pokey 2 ES'], 6, True, 'Turtle Rock - Big Key Chest', 4, {'Turtle Rock - Big Key Chest'}) val_rule(key_logic.door_rules['TR Crystaroller Down Stairs'], 5) val_rule(key_logic.door_rules['TR Dash Bridge WS'], 6) assert world.get_location('Turtle Rock - Eye Bridge - Bottom Right', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Eye Bridge - Top Left', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Eye Bridge - Top Right', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Eye Bridge - Bottom Left', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Boss', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Crystaroller Room', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 7 def val_ganons(key_logic, world, player): rando_room = {'Ganons Tower - Randomizer Room - Top Left', 'Ganons Tower - Randomizer Room - Top Right', 'Ganons Tower - Randomizer Room - Bottom Left', 'Ganons Tower - Randomizer Room - Bottom Right'} compass_room = {'Ganons Tower - Compass Room - Top Left', 'Ganons Tower - Compass Room - Top Right', 'Ganons Tower - Compass Room - Bottom Left', 'Ganons Tower - Compass Room - Bottom Right'} gt_middle = {'Ganons Tower - Big Key Room - Left', 'Ganons Tower - Big Key Chest', 'Ganons Tower - Big Key Room - Right', 'Ganons Tower - Bob\'s Chest', 'Ganons Tower - Big Chest'} val_rule(key_logic.door_rules['GT Double Switch EN'], 6, False, None, 4, rando_room.union({'Ganons Tower - Firesnake Room'})) val_rule(key_logic.door_rules['GT Hookshot ES'], 7, False, 'Ganons Tower - Map Chest', 5, {'Ganons Tower - Map Chest'}) val_rule(key_logic.door_rules['GT Tile Room EN'], 6, False, None, 5, compass_room) val_rule(key_logic.door_rules['GT Firesnake Room SW'], 7, False, None, 5, rando_room) val_rule(key_logic.door_rules['GT Conveyor Star Pits EN'], 6, False, None, 5, gt_middle) # should be 7? val_rule(key_logic.door_rules['GT Mini Helmasaur Room WN'], 6) # not sure about this 6... val_rule(key_logic.door_rules['GT Crystal Circles SW'], 8) assert world.get_location('Ganons Tower - Mini Helmasaur Room - Left', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Mini Helmasaur Room - Right', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Pre-Moldorm Chest', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Validation Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 5 def val_rule(rule, skn, allow=False, loc=None, askn=None, setCheck=None): if setCheck is None: setCheck = set() assert rule.small_key_num == skn assert rule.allow_small == allow assert rule.small_location == loc or rule.small_location.name == loc assert rule.alternate_small_key == askn assert len(setCheck) == len(rule.alternate_big_key_loc) for loc in rule.alternate_big_key_loc: assert loc.name in setCheck